
RDDR

Riley Wood and Tony Espinoza

Oct 21, 2020

CONTENTS

1 Quick Start 1

2 Architecture 5
2.1 Overview . 5
2.2 Running RDDR . 6
2.3 Proxies . 6
2.4 Support for Different Transport Protocols . 7
2.5 Filtering Non-Deterministic Noise . 9
2.6 Support for Diffing Various Application Data . 9

3 Configuration 15

4 Module Index 19

5 Introduction 21

6 Scope 23

7 Indices and tables 25

Python Module Index 27

Index 29

i

ii

CHAPTER

ONE

QUICK START

This page will get you up and running with RDDR in no time. We will deploy 3 instances of DVWA running at
different security levels behind RDDR sharing a single database microservice.

Fig. 1: DVWA deployment with RDDR block diagram

1. Install Kubernetes on your system. and enable the DNS service. Istio is not supported at this time; we’ve seen
issues with Istio sidecars. Best to disable sidecars for now.

2. Clone the RDDR project repository:

git clone https://rjw245@bitbucket.org/rjw245/rddr.git

3. Move to the folder rddr/deployments/dvwa_frontend/k8s

cd rddr/deployments/dvwa_frontend/k8s

1

https://kubernetes.io/docs/setup/

RDDR

4. Apply all kubernetes yaml files in this directory. The command for microk8s is shown below:

microk8s.kubectl apply -f .

Wait until all pods are in the Running state. MySQL can take some time even after it’s in the Running state to become
fully ready.

5. Open localhost:31001 in your browser. You should see the login page:

Fig. 2: DVWA login page

6. Login with user admin, password password.

7. Click “Create/Reset Database” and login once more.

8. Navigate to the “SQL Injection” tab. /home/riley/rddr/docs/.venv/bin/pygmentize 9. Enter a benign input in the
User ID box, such as 1. Press enter and you’ll see the request goes through.

10. Enter a malicious input such as:

' UNION SELECT user,password from users WHERE '1'='1

and press enter.

11. You should see the request gets denied by RDDR:

This is because we’ve deployed multiple instances of DVWA configured for different security levels. The more secure
instance properly sanitizes the SQL query which causes its query to the database to look different from that of the other
instances. RDDR catches this divergence in behavior and blocks the response to the user so that the SQL sanitization
bug cannot be exploited.

2 Chapter 1. Quick Start

RDDR

Fig. 3: DVWA SQL Injection with benign input

Fig. 4: DVWA SQL Injection with malicious input

3

RDDR

Fig. 5: RDDR Denying Access

4 Chapter 1. Quick Start

CHAPTER

TWO

ARCHITECTURE

Here I will describe how RDDR is structured and link to some of the classes that make it up.

2.1 Overview

Fig. 1: RDDR Deployment Block Diagram

Above is a simplified view of an RDDR deployment. RDDR sits on either side of a set of instances of the same
application. Incoming requests to the proxy are replicated to all application instances, and their responses are diffed
and merged before being sent back. Any outgoing requests from the application instances pass through an outgoing
proxy which diffs and merges the requests before passing the request on to the target microservice. The response back
is then replicated to all app instances. If the application relies on multiple separate backend services, an outgoing
request proxy should be created for each. The entire RDDR deployment is placed behind a production-grade Envoy
proxy.

5

RDDR

RDDR shines when the application instances differ from one another. Subtle variations in the application that do not
change nominal behavior can help to catch bugs and prevent exploitation of them.

An ideal deployment will also consist of two copies of the application that are identical. These form the “filter pair”
which helps RDDR to distinguish between random noise and real bugs. Because the filter pair are known to be
identical, any differences in their behavior will be ignored across the entire set. See Filtering Non-Deterministic Noise
for more information.

2.2 Running RDDR

RDDR is packaged as a Python module with a main method.

rddr.__main__.main()
Entrypoint for the RDDR proxy. Parses the config file and starts RDDR.

It should be executed like so once installed:

python -m rddr [-c path/to/config.yaml]

RDDR accepts the following arguments:

usage: python -m rddr [-h] [-c CONFIG]

optional arguments:
-h, --help show this help message and exit
-c CONFIG, --config CONFIG

The main method parses the config file and starts the top level RDDR class, shown below:

class rddr.rddr.Rddr(config)
Bases: object

Top level class for Rddr. Encapsulates one incoming proxy and one or more outgoing proxy.

Parameters config (dict) – RDDR configuration dictionary

run()
Endless loop. Calls run() on all proxies configured in separate threads.

2.3 Proxies

RDDR implements separate proxies for incoming versus outgoing requests. Both of these proxy classes share the
RddrProxy parent class.

class rddr.proxies.proxy.RddrProxy(mp_manager, config)
Bases: abc.ABC

This is an abstract class, a parent to the incoming and outgoing proxies used by RDDR.

Proxies are built on the asyncio library in Python 3.8. This framework was found to be faster and cleaner than
the prior state machine-based implementations.

Parameters config (dict) – Dictionary of user config provided to RDDR at the command line

6 Chapter 2. Architecture

RDDR

2.3.1 Incoming Proxy

The RddrIncomingProxy class implements one proxy between a client and N variants of a server.

class rddr.proxies.incoming_proxy.RddrIncomingProxy(mp_manager, config)
Bases: rddr.proxies.proxy.RddrProxy

Implements an incoming proxy for RDDR. Replicates incoming requests to N applications and diffs their re-
sponses before forwarding their response.

Parameters config (dict) – Dictionary of user config provided to RDDR at the command line

init_server()
Start an asyncio server for this proxy. Passes the _new_client member method as the new client callback.

2.3.2 Outgoing Proxy

The RddrOutgoingProxy class implements one proxy between N variants of an application and one server they
want to query.

class rddr.proxies.outgoing_proxy.RddrOutgoingProxy(mp_manager, config, dest)
Bases: rddr.proxies.proxy.RddrProxy

Implements an outgoing proxy for RDDR. Merges outgoing requests from N applications to some other mi-
croservice and replicates the response back.

Parameters

• config (dict) – Dictionary of user config provided to RDDR at the command line

• dest (str) – Destination address where incoming requests will be forwarded. String
format: “<HOST>:<PORT>”

init_server()
Start an asyncio server for this proxy. Passes the _new_client member method as the new client callback.

2.4 Support for Different Transport Protocols

We intend RDDR to support a variety of transport protocols. The latest version of RDDR supports:

• Unencrypted TCP

• SSL

Each proxy (incoming and outgoing) can be configured for a different transport protocol. This is useful in the cloud,
where applications can be stitched from many smaller microservices that all speak different protocols. See Configura-
tion for more on configuring the protocol.

class rddr.protocols.protocol.RddrProtocol
Bases: abc.ABC

Abstract class to be used as a base for concrete protocols.

abstract create_server(host, port)
Coroutine. Creates a server socket.

Parameters

• host (str) – Hostname/IP to bind server to

• port (int) – Port to bind server to

2.4. Support for Different Transport Protocols 7

RDDR

Return type None

get_stream_addr(stream)
Given an asyncio stream (either StreamReader or StreamWriter) returns a string representing the host and
port of the party on the other end of the streams. Format: “<host>:<port>” May return None if address
cannot be retrieved.

Parameters stream (Union[StreamReader, StreamWriter]) – StreamReader or
StreamWriter used to communicate with remote party

Return type Optional[str]

abstract async open_connection(host, port)
Abstract coroutine. Opens a connection to host:port. Returns (StreamReader, StreamWriter)

Parameters

• host (str) – Host to connect to

• port (int) – Port to connect to

Return type Tuple[StreamReader, StreamWriter]

2.4.1 TCP

class rddr.protocols.protocol_tcp.RddrProtocolTcp
Bases: rddr.protocols.protocol.RddrProtocol

Support for unencrypted TCP.

create_server(host, port)
Coroutine. Creates a server socket.

Parameters

• host (str) – Hostname/IP to bind server to

• port (int) – Port to bind server to

Return type None

async open_connection(host, port)
Creates a new unencrypted socket for forwarding data. Returns (StreamReader, StreamWriter).

Parameters

• host (str) – Host to connect to

• port (int) – Port to connect to

Return type Tuple[StreamReader, StreamWriter]

8 Chapter 2. Architecture

RDDR

2.4.2 SSL

class rddr.protocols.protocol_ssl.RddrProtocolSsl(cert='certs/clientcert.pem',
key='certs/clientkey.pem')

Bases: rddr.protocols.protocol.RddrProtocol

Support for SSL on top of TCP

Parameters

• cert (str) – Path to the certificate file

• key (str) – Path to the key file

create_server(host, port)
Coroutine. Creates a server socket with SSL context.

Parameters

• host (str) – Hostname/IP to bind server to

• port (int) – Port to bind server to

Return type None

async open_connection(host, port)
Creates a new socket and wraps it in an encrypted session for forwarding data. Returns (StreamReader,
StreamWriter).

Parameters

• host (str) – Host to connect to

• port (int) – Port to connect to

Return type Tuple[StreamReader, StreamWriter]

2.5 Filtering Non-Deterministic Noise

You can deploy two identical app instances which will help to filter any non-deterministic noise in the system. See the
filter parameter in Configuration.

Consider a query that fetches a random number from the application. Every instance will generate a different random
number. Without filtering, the incoming proxy would flag this divergence as a potential bug. However, if the proxy
sees that the two identical apps also differ in their responses, we can safely ignore this region of the response and in
doing so we’ve filtered out the non-deterministic noise.

2.6 Support for Diffing Various Application Data

Filtering non-deterministic noise as described above requires the proxies to do a minimal amount of parsing of the data.
For example, if the data is in JSON format, we may want ignore certain non-deterministic keys of the data structure.
For a text file, we may instead want to ignore certain lines. We need a way to tokenize the data being transferred so that
we can ignore particular tokens. Since the tokenizing algorithm is likely to vary across applications, we have defined
a simple interface for others to extend.

2.5. Filtering Non-Deterministic Noise 9

RDDR

2.6.1 Interface Specification

Simply implement a class that inherits from AbstractRddrDiff and implement the functions diff_traffic,
modify_traffic, and optionally render_denial and validate_params:

class rddr.AbstractRddrDiff(mp_manager, shared_state, do_filter=False, logger=None,
params=None)

Bases: abc.ABC

Defines the interface for all RDDR diff plugins. Users may extend this class to add support for a particular
protocol to RDDR. Diff plugins may optionally specify configuration parameters that a user may provide through
the config YAML file. The diff-params key of the YAML file is reserved on each proxy for use by the diff
plugin applied to that proxy. The schema expected by the plugin should be well-specified. Diff plugins should
implement validate_params to validate the schema of the user-provided diff-params.

Parameters

• do_filter (bool) – If True, will use the first two traffic streams as a filter pair to filter
out non-deterministic noise.

• logger (Optional[Logger]) – The logger instance to use for printing messages.

• params (Optional[dict]) – Miscellaneous user-provided config for the plugin, from
the user’s YAML config file. Subclasses should define clearly what they expect to be passed
as parameters.

diff_traffic(traffic)
Diffs the traffic from N instances. Also indicates how many bytes of each traffic stream has been processed
and whether or not more bytes of the stream are needed to process it. This default implementation will
never detect divergence, always processes the entire stream and never requests more bytes. Subclasses
may raise the RddrInsufficientData exception if diff_traffic was called on partial data (i.e. more data is
required from the instances to make a decision). The proxy tunnel will handle this exception by reading
from the instances once more before calling diff_traffic again.

Parameters traffic (List[bytes]) – List of bytestrings from N instances.

Return type List[Tuple[int, bool]]

Returns A list of 2-tuples, one tuple for each traffic stream provided through the “traffic” ar-
gument. Each tuple is of the form (int, bool). The first element of the tuple is the number
of bytes of that stream that have been differenced and can safely be sent along to the client.
If this value is zero, no bytes have yet been parsed. If this value is less than zero, then
the streams differ from one another, and the traffic SHOULD NOT be forward to the client.
The second element of the tuple is a flag indicating whether or not more bytes are required
from the traffic source in order to parse this stream. This is useful if the plugin tokenizes
the streams and has to this point received a partial token and requires more bytes to fully
difference everything.

modify_traffic(traffic, n_instances)
This function replicates one incoming stream into N for each of the N application variants. In the process,
it may make modifications to the replica for each instance as necessary. This can be necessary if there are
unique tokens that need to be substituted for each instance, as in the case of CSRF tokens in HTML forms.
This default implementation makes no modifications to the traffic.

Parameters

• traffic (bytes) – Request to modify per recipient in addrlist.

• n_instances (int) – Number of app instances in this deployment

Return type List[bytes]

10 Chapter 2. Architecture

RDDR

Returns List of the traffic to send to each of the app variants.

render_denial()
The diff interface can implement a custom error message appropriate for the application layer protocol
being handled. An error message, for example. Default implementation returns empty byte string.

Return type bytes

Returns Bytestring to be sent back to the client if divergent behavior is seen.

validate_params()
Validates the diff-params key in the user config file. By default, does nothing.

We have packaged four classes which implement the interface for JSON, HTTP, raw bytes, and Postgres respectively.
These are shown below:

2.6.2 JSON

class rddr_diff_builtins.RddrJsonDiff(mp_manager, shared_state, do_filter=False, log-
ger=None, params=None)

Bases: rddr.diff_interface.AbstractRddrDiff

Diff tool for JSON documents that ships with RDDR. JSON is expected to be embedded in an HTTP response.
Differences key by key. Does not modify incoming traffic.

Parameters

• do_filter (bool) –

• logger (Optional[Logger]) –

• params (Optional[dict]) –

diff_traffic(traffic)
Parses JSON documents embedded in HTTP responses. May request more bytes of a given stream if a
partial JSON document has been received and cannot yet be parsed. Differences key by key.

See interface definition rddr.AbstractRddrDiff.diff_traffic() for more.

Parameters traffic (List[bytes]) – List of traffic from app instances.

Return type List[Tuple[int, bool]]

render_denial()
Returns an HTTP response string containing a 500 error and an “access denied” message, with the RDDR
logo. See static/denied.html for the content.

Return type bytes

2.6.3 HTTP

class rddr_diff_builtins.RddrHttpDiff(mp_manager, shared_state, do_filter=False, log-
ger=None, params=None)

Bases: rddr.diff_interface.AbstractRddrDiff

Diff tool for HTTP that ships with RDDR. Capable of handling CSRF tokens. N instances may generate form
tokens or other per-instance tokens. Plugin will save these tokens and send one along to the client. Upon seeing
the client’s token later, will substitute the token appropriate for each server.

diff_traffic(traffic)
Diffs HTML delimited by line breaks.

2.6. Support for Diffing Various Application Data 11

RDDR

Upon encountering noise within a line (i.e. the filter pair differ), will extract the largest contiguous set
of characters within the line that differ and save the value reported by each server. These tokens can be
reinserted in a user’s subsequent requests on sight. The reinsertion is implemented by modify_traffic. This
is necessary when an application being N-versioned uses anti-CSRF tokens in its user input forms. The
proxy must send the appropriate token back to each instance of the application for it to service the user’s
request.

See interface definition rddr.AbstractRddrDiff.diff_traffic() for more.

Parameters traffic (List[bytes]) – List of traffic from app instances.

Return type List[Tuple[int, bool]]

modify_traffic(traffic, n_instances)
Return a list of bytestrings, one to send to each application instance.

This method will re-insert any saved tokens it finds in the user’s traffic with the token originally sent by
each instance. See diff_traffic for further explanation of the utility of this feature.

Parameters

• traffic (bytes) – Request to modify per recipient in addrlist.

• n_instances (int) – Number of app instances in this deployment

Return type List[bytes]

render_denial()
Returns an HTTP response string containing a 500 error and an “access denied” message, with the RDDR
logo. See static/denied.html for the content.

Return type bytes

validate_params()
Validates the diff-params config field for this particular class.

2.6.4 Bytewise

class rddr_diff_builtins.RddrByteDiff(mp_manager, shared_state, do_filter=False, log-
ger=None, params=None)

Bases: rddr.diff_interface.AbstractRddrDiff

Parameters

• do_filter (bool) –

• logger (Optional[Logger]) –

• params (Optional[dict]) –

diff_traffic(traffic)
Validates that messages match byte for byte.

See interface definition rddr.AbstractRddrDiff.diff_traffic() for more.

Parameters traffic (List[bytes]) – List of traffic from app instances. Key = instance
address “host:port” Value = Bytes response

Return type List[Tuple[int, bool]]

12 Chapter 2. Architecture

RDDR

2.6.5 PostgreSQL

class rddr_diff_builtins.RddrPostgresDiff(mp_manager, shared_state, do_filter=False,
logger=None, params=None)

Bases: rddr.diff_interface.AbstractRddrDiff

This class enables support for diffing Postgres traffic across N application instances. This diff plugin supports
diff-params. diff-params should be a dictionary with one key: tokens. tokens is a list of lists
of bytestrings, one bytestring per application instance. This allows you to preconfigure tokens you expect to
be different among the Postgres instances. An example is the string reported for the server version – different
variants will provide different strings. By specifying that here, you can avoid flagging that as divergent behavior.

Parameters

• do_filter (bool) –

• logger (Optional[Logger]) –

• params (Optional[dict]) –

diff_traffic(traffic)
Validates that Postgres messages match. Ignores certain packet types. See member _back-
end_pkt_types_to_ignore for the full list of ignored packet types. Prior to diffing, will substitute tokens
preconfigured in the config file under the diff-params key for the associated proxy.

See interface definition rddr.AbstractRddrDiff.diff_traffic() for more.

Parameters traffic (List[bytes]) – List of traffic from app instances.

Return type List[Tuple[int, bool]]

render_denial()
The diff interface can implement a custom error message appropriate for the application layer protocol
being handled. An error message, for example. Default implementation returns empty byte string.

Return type bytes

Returns Bytestring to be sent back to the client if divergent behavior is seen.

validate_params()
Validates the diff-params config field for this particular class.

These classes each implement the functions diff_traffic and modify_traffic.

Users may write their own classes that implement the above functions to tailor RDDR’s filtering engine for their own
application. Simply include the name of your class via the diff-class field of your config file.

2.6. Support for Diffing Various Application Data 13

RDDR

14 Chapter 2. Architecture

CHAPTER

THREE

CONFIGURATION

Here is an example config file:

addrlist:
- 172.17.0.2:443
- 172.17.0.3:443
- 172.17.0.4:443

filter: True
incoming-proxy:

host: 0.0.0.0
port: 4443
protocol: ssl
diff-class: "rddr_diff_builtins.RddrHttpDiff"
enforcing: True

outgoing-proxies:
1.2.3.4:3036:

host: 0.0.0.0
ports:

- 3001
- 3002
- 3003

diff-class: "rddr_diff_builtins.RddrJsonDiff"
protocol: ssl
enforcing: True

some-hostname:5432:
host: 192.168.99.1
ports:

- 4001
- 4002
- 4003

diff-class: "rddr_diff_builtins.RddrPostgresDiff"
diff-params: {

...
}
protocol: tcp
enforcing: True

verbosity: "DEBUG"

And here is what each of these options configures:

addrlist Addresses (host:port) of the N application variants we want to proxy. If you are doing filtering
(i.e. filter is True), make sure the addresses of the two instances comprising your filter pair appear
first in this list.

filter Specify whether or not to filter non-deterministic noise. This requires you to deploy two identical
application instances. This is known as the filter pair. You must list the filter pair instances as the

15

RDDR

first two entries in addrlist.

incoming-proxy Configuration of the single proxy for incoming requests to the N variants

host The hostname or IP which the proxy will bind to. 0.0.0.0 indicates it will bind to
all available hostnames/IPs.

port The port which the proxy will bind to.

protocol The transport protocol to use for this proxy. One of tcp, ssl.

diff-class Python class to import for filtering non-deterministic noise. This class
must implement the functions diff_traffic and modify_traffic. RDDR
ships with four such classes: rddr_diff_builtins.RddrHttpDiff,
rddr_diff_builtins.RddrJsonDiff, rddr_diff_builtins.
RddrByteDiff, and rddr_diff_builtins.RddrPostgresDiff,

enforcing When the N variants’ responses to a request differ (after filtering non-
deterministic noise), enforcing determines whether or not the server will forward
the merged response to the client. enforcing = True will block the response.

outgoing-proxies Configure one outgoing proxy per backend service that the N variants make requests
to.

<dest 1> This proxy will forward traffic to this destination. Specify the destination as in
addrlist: host:port

host The hostname or IP which the proxy will bind to. 0.0.0.0 indicates it will
bind to all available hostnames/IPs.

ports The list of ports which the proxy will bind to. Each port should accept
connections from one of the N instances. The first port in the list corresponds to
the first instance in addrlist, the second port with the second instance, and so on.
Update the N variants to send their requests to the bound host and the port asso-
ciated with them. Proxy will bind to <host>:<port_1>, . . . , <host>:<port_N>.

protocol The transport protocol to use for this proxy. One of tcp, ssl.

diff-class Python class to import for filtering non-deterministic noise.

diff-params Some RDDR diff plugins accept a set of configuration parameters.
The plugin will specify its own schema for this field.

enforcing If the N variants differ in their outgoing requests (after filtering non-
deterministic noise), enforcing determines whether or not the server will
forward the merged response to the client. enforcing = True will block
the request.

. . .

verbosity Verbosity level. One of INFO, DEBUG, WARNING, ERROR.

This RDDR deployment can be visualized as:

16 Chapter 3. Configuration

RDDR

Fig. 1: Block diagram of the above configuration

17

RDDR

18 Chapter 3. Configuration

CHAPTER

FOUR

MODULE INDEX

19

RDDR

20 Chapter 4. Module Index

CHAPTER

FIVE

INTRODUCTION

RDDR is an N-Versioning proxy that can identify bugs in your cloud microservice and prevent them from being
exploited.

RDDR sits in front of N variants of any microservice and proxies their incoming and outgoing traffic. It replicates
incoming traffic to each instance and then diffs their responses; it also diffs their outgoing requests and replicates the
response to each of them. If any difference in behavior is seen among the variants, RDDR will block the response.

Fig. 1: RDDR Deployment Block Diagram

RDDR stands for:

Replicate Incoming requests are replicated to each variant of the microservice.

De-noise RDDR filters random noise from their responses.

Diff RDDR diffs the remainder of their responses to detect difference in behavior.

Respond If no differences are detected, the merged response is returned to the requester.

Read Quick Start to get started using RDDR.

RDDR was developed at the Spark Research Lab at the University of Texas at Austin.

21

https://spark.ece.utexas.edu/

RDDR

22 Chapter 5. Introduction

CHAPTER

SIX

SCOPE

This documentation will cover the organization of the RDDR Python module. If time permits, I will also document
the Kubenernetes deployment I have used for testing. Kubernetes is not required. You can deploy RDDR outside of a
container and point it at your replicated instances however they are deployed.

23

RDDR

24 Chapter 6. Scope

CHAPTER

SEVEN

INDICES AND TABLES

• genindex

• Module Index

• search

25

RDDR

26 Chapter 7. Indices and tables

PYTHON MODULE INDEX

r
rddr.__main__, 6

27

RDDR

28 Python Module Index

INDEX

A
AbstractRddrDiff (class in rddr), 10

C
create_server() (rddr.protocols.protocol.RddrProtocol

method), 7
create_server() (rddr.protocols.protocol_ssl.RddrProtocolSsl

method), 9
create_server() (rddr.protocols.protocol_tcp.RddrProtocolTcp

method), 8

D
diff_traffic() (rddr.AbstractRddrDiff method), 10
diff_traffic() (rddr_diff_builtins.RddrByteDiff

method), 12
diff_traffic() (rddr_diff_builtins.RddrHttpDiff

method), 11
diff_traffic() (rddr_diff_builtins.RddrJsonDiff

method), 11
diff_traffic() (rddr_diff_builtins.RddrPostgresDiff

method), 13

G
get_stream_addr()

(rddr.protocols.protocol.RddrProtocol
method), 8

I
init_server() (rddr.proxies.incoming_proxy.RddrIncomingProxy

method), 7
init_server() (rddr.proxies.outgoing_proxy.RddrOutgoingProxy

method), 7

M
main() (in module rddr.__main__), 6
modify_traffic() (rddr.AbstractRddrDiff method),

10
modify_traffic() (rddr_diff_builtins.RddrHttpDiff

method), 12

O
open_connection()

(rddr.protocols.protocol.RddrProtocol
method), 8

open_connection()
(rddr.protocols.protocol_ssl.RddrProtocolSsl
method), 9

open_connection()
(rddr.protocols.protocol_tcp.RddrProtocolTcp
method), 8

R
Rddr (class in rddr.rddr), 6
rddr.__main__ (module), 6
RddrByteDiff (class in rddr_diff_builtins), 12
RddrHttpDiff (class in rddr_diff_builtins), 11
RddrIncomingProxy (class in

rddr.proxies.incoming_proxy), 7
RddrJsonDiff (class in rddr_diff_builtins), 11
RddrOutgoingProxy (class in

rddr.proxies.outgoing_proxy), 7
RddrPostgresDiff (class in rddr_diff_builtins), 13
RddrProtocol (class in rddr.protocols.protocol), 7
RddrProtocolSsl (class in

rddr.protocols.protocol_ssl), 9
RddrProtocolTcp (class in

rddr.protocols.protocol_tcp), 8
RddrProxy (class in rddr.proxies.proxy), 6
render_denial() (rddr.AbstractRddrDiff method),

11
render_denial() (rddr_diff_builtins.RddrHttpDiff

method), 12
render_denial() (rddr_diff_builtins.RddrJsonDiff

method), 11
render_denial() (rddr_diff_builtins.RddrPostgresDiff

method), 13
run() (rddr.rddr.Rddr method), 6

V
validate_params() (rddr.AbstractRddrDiff

method), 11

29

RDDR

validate_params()
(rddr_diff_builtins.RddrHttpDiff method),
12

validate_params()
(rddr_diff_builtins.RddrPostgresDiff method),
13

30 Index

	Quick Start
	Architecture
	Overview
	Running RDDR
	Proxies
	Support for Different Transport Protocols
	Filtering Non-Deterministic Noise
	Support for Diffing Various Application Data

	Configuration
	Module Index
	Introduction
	Scope
	Indices and tables
	Python Module Index
	Index

